Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis.
نویسندگان
چکیده
The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast -- an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.
منابع مشابه
MDL28170, a Calpain Inhibitor, Affects Trypanosoma cruzi Metacyclogenesis, Ultrastructure and Attachment to Rhodnius prolixus Midgut
BACKGROUND Trypanosoma cruzi is the etiological agent of Chagas' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the invertebrate host. METHODOLOGY/PRINCIPAL FIND...
متن کاملAnalysis of Proteasomal Proteolysis during the In Vitro Metacyclogenesis of Trypanosoma cruzi
Proteasomes are large protein complexes, whose main function is to degrade unnecessary or damaged proteins. The inhibition of proteasome activity in Trypanosoma cruzi blocks parasite replication and cellular differentiation. We demonstrate that proteasome-dependent proteolysis occurs during the cellular differentiation of T. cruzi from replicative non-infectious epimastigotes to non-replicative...
متن کاملDifferential gene expression during Trypanosoma cruzi metacyclogenesis.
The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage s...
متن کاملProtein Synthesis Attenuation by Phosphorylation of eIF2α Is Required for the Differentiation of Trypanosoma cruzi into Infective Forms
Chagas' disease is a potentially life-threatening illness caused by the unicellular protozoan parasite Trypanosoma cruzi. It is transmitted to humans by triatomine bugs where T. cruzi multiplies and differentiates in the digestive tract. The differentiation of proliferative and non-infective epimastigotes into infective metacyclic trypomastigotes (metacyclogenesis) can be correlated to nutrient...
متن کاملIn vitro effects of citral on trypanosoma cruzi metacyclogenesis.
Citral, the main constituent of lemongrass (Cymbopogon citratus) essential oil, was added to Trypanosoma cruzi cultures grown in TAU3AAG medium to observe the effect on the epimastigote-to-trypomastigote differentiation process (metacyclogenesis). Our results showed that citral (20 μg/mL) did not affect epimastigote viability or inhibit the differentiation process. Concentrations higher than 60...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anais da Academia Brasileira de Ciencias
دوره 80 1 شماره
صفحات -
تاریخ انتشار 2008